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SOLUTION SKETCHES TO HOMEWORK 1

MATHIAS BRAUN AND WENHAO ZHAO

Homework 1.1 (An example of propagation of convergence®). Let D c C be a bounded
domain and denote by D is closure. Let ( f,).en be a sequence of continuous functions
fn: D — C such that f, is holomorphic in D for every n € N. Assume (f,),eN converges
uniformly on the boundary dD.

a. Show (f,)nen converges uniformly on D to some function f: D — C'.
b. Show f is holomorphic on D.

Homework 1.2 (Sequences of holomorphic functions). a. Let (f,)nen constitute a
sequence of holomorphic functions f,,: B;(0) — C converging locally uniformly
to a given holomorphic function f: B;(0) — C. Does the sequence ( f,f"))neN of
derivatives of f,, with increasing order converge locally uniformly to a continuous
function g: B1(0) — C? Give a proof or find a counterexample.

b. Give an example of an open set U C C and a sequence ( f;;),en of holomorphic
functions f,,: U — C that converges locally uniformly to a function f: U — C
and such that f;, has exactly one zero for every n € N while f has no zero. Can one
construct a counterexample under the requirement of uniform convergence on U?

Solution. a. False. Consider the sequence defined by f,(z) := z", which converges locally
uniformly to 0 on B;(0). However, the n-th derivative of f,, computes as f,f”) (z) =n!,
which is not even bounded as n — co.

b. We take U := C and set f,(z) := 1 + z/n. Then f; has its only zero at —n for every
n € N, but the sequence converges locally uniformly to the function constantly equal to one
on U, which has no zero.

To have an example certifying uniform convergence, one can take f,(z) := z2> — 1/n on
the open halfspace U := {R > 0}.

Homework 1.3 (Convergence of varying path-integrals). Let (f,),en be a sequence of
holomorphic functions f;,,: U — C that converges locally uniformly on a given open set
U c C to some function f: U — C. Moreover, let (y,)neN be a sequence of C!-paths
¥Yn: [0,1] — U such that y, — y and y,, — 7’ uniformly on [0, 1] as n — oo, where
y:[0,1] = U is a C'-path. Show

lim /y d= /y @) dz.

Solution. By definition of the complex path integral, every n € N satisfies

1
fu(z)dz = /0 Faoyn(t)y,(2)dr.

Yn

The idea of the proof will be to apply Lebesgue’s dominated convergence theorem to the
right-hand side. To this aim, we estimate the factors f;, o y, and 7y;, separately.
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IHint. Show (fn)nen is a Cauchy sequence with respect to uniform convergence.
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The latter is elementary. Since y;, — y’ uniformly on [0, 1] as n — oo, the sequence
(177, (*))nen is bounded uniformly in ¢ € [0, 1]; in other words,

sup sup |y, (t)] < co.
neNre(0,1]

We turn to the term f,, o y,. Here, as (f;;)nen converges only locally uniformly, some
more work is needed. The idea is that for all sufficiently large n € N, all segments y, ([0, 1])
will be contained in a neighborhood of the segment y ([0, 1]) which is compactly contained
in U; on this neighborhood, (f;,),en converges uniformly. To construct this neighborhood,
observe first that vy is continuous (as a uniform limit of continuous paths). Hence, since
[0, 1] is compact, so is the image y ([0, 1]).

We claim there exists § > 0 such that the closure B5(y ([0, 1])) of the §-neighborhood
of ([0, 1]) is contained in U. This is clear if U = C; hence, let us assume U # C. Let
dc\v: € — [0, 00) denote the distance function to the complement of U, defined by

d := inf —-v|.
cw(z) yeC\Ulz ¥l

Then dc\y is Lipschitz continuous’. Indeed, let z, 7’ € C. Since dc\w(2’) is finite, given
any & > 0 there exists an g-almost minimizer y, € C\ U in the definition of d¢\y, i.e.
[ = yel <dcw(Z) +e.
This easily implies
dow(2) —dew (@) < lz=yel =2 —yel+e < |z -2+ &
here, we used the triangle inequality in the second estimate. The arbitrariness of € gives
dew(z) —dew(?) < lz-7).
Flipping the roles of z and 7’ in the previous argument gives
[devw(2) = devw (2)] < 2 =21,
which is the desired Lipschitz continuity. In turn, dc\y is continuous on the compact set
¥([0, 1]). Since U is open and y([0, 1]) is contained in U, d¢\y is positive on y([0, 1]) and
thus, since continuous functions attain their minima on compact sets, uniformly bounded
from zero by 29, where § > 0. Considering the ¢- instead of the 26-neighborhood in order
to ensure the closure Bs(y ([0, 1])) is still contained in U yields the claim.
Now by uniform convergence of vy, to 7y, there exists ns € N such that for every n’ > ng,
sup [yn(1) —y(0)] < 63
[0,1]

tefo,

in other words, v, ([0,1]) € Bs(y([0,1])). Since (f,)neN converges uniformly to f on
Bs(y([0,1])) as remarked in the lecture, it is bounded on this set; therefore

sup sup |fn o ya(?)| < sup sup |fn(2)] < co.
nzns 1€[0,1] n2ns zeBs(y(10.1]))

Lebesgue’s dominated convergence theorem thus yields

1
lim [ fu(z)dz= lim / R ROPAGY!
n—oo yn n—oo O

1
- [ revroe
= /f(z) dz
Y
provided f;, oy, — f oy and y,, — 7y pointwise on [0, 1] as n — co.

ZWe will only need continuity, but the proof is a good exercise in dealing with almost minimizers or almost
maximizers.
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The latter holds trivially by uniform convergence.

To show the former, let £ > 0. Note that f is continuous on U as the locally uniform limit
of continuous functions, hence uniformly continuous on the compact set B5(y ([0, 1])). Up
to shrinking &, we may and will assume every ¢ € [0, 1] and every z € Bs(y(t)) satisfy

|foy() - f(2)| <e.
In turn, by if n > ns we obtain

lfnovn(t) = foyO < |fuoya(t) = foyn@]+1f oyn(t) = foy@)
sup  [fulz) - f(2)] +e.

z€B5s(y([0,1]))

A

IN

As n — oo, the right-hand side converges to &. Since & is arbitrary, the desired pointwise®
convergence follows.

Homework 1.4 (Osgood’s theorem). Let U c C be open and ( f;;),eN be a sequence of
holomorphic functions f,,: U — C that converges pointwise to f: U — C. The goal of this
exercise is to show there exists an open, dense subset Uy C U such that (f;,),en is locally
uniformly bounded on Ujy. As we will see in the course, this implies the local uniform
convergence of (f;;)nen to f on Up; in particular, f is holomorphic on Uy.

a. Define the set of points where (f;,),eN is locally uniformly bounded, i.e.,

Up :={z € U : there exists r > 0 with sup sup |f,(2)| < co}.
neNz’ €B,(z)
Show Uj is open.
b. Show if Uy is not dense in U, then there exists a ball B, (zo) € U such that for all
balls B,/ (z") C By, (zo) the sequence ( f,)nen is not uniformly bounded on B, (z’).
c. Use b. to construct a sequence of nested closed balls E‘rk (zk) € By, (2k—1) and a
subsequence ( fp, Jken such that | f;,, | > k on Erk (zk).
d. Show the intersection of the sequence of closed balls from c. is nonempty. Derive a
contradiction to the pointwise convergence of ( f;;),en and conclude the proof.

Solution. a. Let z € Uy and r > 0 be as in the definition of Uy. We claim B, (z) C Uy.
Indeed, given any y € B, (z) there is ry > 0 such that B, (y) C B,(z). Consequently,

sup sup |fu(2)] <sup sup | fu(2)] < oo,

neNz’eB,, (y) neNz’ €B,(z)
The definition of Uy entails y € Uy. Since y was arbitrary, this shows B, (z) C Up; since z
was arbitrary this shows the claimed openness of Uy.

b. Since Uy is not dense in U, there exist zo € U and rp > 0 such that B, (z9) N Up = 0.
Now suppose to the contrary that ( f;;),en is uniformly bounded on a ball B, (z) as stated.
Then by definition of Uy, we would have z’ € B,,(z0) N Up, a contradiction.

c. Since the sequence ( f;;)neN is not uniformly bounded on B, (zo), there exists n; € N
and z; € B,,(z0) with the property | f,, (z1)| > 1. As the function f,, is continuous, we find
aclosed ball B,, (z1) C By, (z0) such that | f,,,| > 1 on B, (z1). By b., the sequence ( f)neN
is not uniformly bounded on the interior B, (z;); thus, there exist n, € N and z; € B, (z1)
such that | £, (z2)| > 2. By continuity of f;,, we find a closed ball B,,(z2) C B,,(z1) such
that | f,,,| > 2 on B,,(z2). The two desired (sub)sequences are constructed by iterating this
procedure.

(iv) Since the sets By, (zx) are nested and compact, their intersection contains an element
Z. For this element z, by construction we have | f;,, (Z)| > k for every k € N. This shows the
sequence (f;,(Z))neN cannot converge as n — +oo (as it has an unbounded subsequence).

3 fact, we have just shown f, o y,;, — f o7y uniformly on [0, 1].
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Hence, Uy has to be dense in U and by definition, ( f;;),eN is locally uniformly bounded on
the set Uy constructed above”.

“4Note that we did not explicitly use the holomorphy of each element of (f;; ), eN in the proof. However, the
latter is crucial to pass from local uniform boundedness to local uniform convergence via Montel’s theorem.



