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Homework 1.1 (An example of propagation of convergence∗). Let 𝐷 ⊂ C be a bounded
domain and denote by 𝐷̄ is closure. Let ( 𝑓𝑛)𝑛∈N be a sequence of continuous functions
𝑓𝑛 : 𝐷̄ → C such that 𝑓𝑛 is holomorphic in 𝐷 for every 𝑛 ∈ N. Assume ( 𝑓𝑛)𝑛∈N converges
uniformly on the boundary 𝜕𝐷.

a. Show ( 𝑓𝑛)𝑛∈N converges uniformly on 𝐷̄ to some function 𝑓 : 𝐷̄ → C1.
b. Show 𝑓 is holomorphic on 𝐷.

Homework 1.2 (Sequences of holomorphic functions). a. Let ( 𝑓𝑛)𝑛∈N constitute a
sequence of holomorphic functions 𝑓𝑛 : 𝐵1 (0) → C converging locally uniformly
to a given holomorphic function 𝑓 : 𝐵1 (0) → C. Does the sequence ( 𝑓 (𝑛)𝑛 )𝑛∈N of
derivatives of 𝑓𝑛 with increasing order converge locally uniformly to a continuous
function 𝑔 : 𝐵1 (0) → C? Give a proof or find a counterexample.

b. Give an example of an open set 𝑈 ⊂ C and a sequence ( 𝑓𝑛)𝑛∈N of holomorphic
functions 𝑓𝑛 : 𝑈 → C that converges locally uniformly to a function 𝑓 : 𝑈 → C
and such that 𝑓𝑛 has exactly one zero for every 𝑛 ∈ N while 𝑓 has no zero. Can one
construct a counterexample under the requirement of uniform convergence on 𝑈?

Solution. a. False. Consider the sequence defined by 𝑓𝑛 (𝑧) := 𝑧𝑛, which converges locally
uniformly to 0 on 𝐵1 (0). However, the 𝑛-th derivative of 𝑓𝑛 computes as 𝑓

(𝑛)
𝑛 (𝑧) = 𝑛!,

which is not even bounded as 𝑛 → ∞.
b. We take 𝑈 := C and set 𝑓𝑛 (𝑧) := 1 + 𝑧/𝑛. Then 𝑓𝑛 has its only zero at −𝑛 for every

𝑛 ∈ N, but the sequence converges locally uniformly to the function constantly equal to one
on 𝑈, which has no zero.

To have an example certifying uniform convergence, one can take 𝑓𝑛 (𝑧) := 𝑧2 − 1/𝑛 on
the open halfspace 𝑈 := {ℜ > 0}.

Homework 1.3 (Convergence of varying path-integrals). Let ( 𝑓𝑛)𝑛∈N be a sequence of
holomorphic functions 𝑓𝑛 : 𝑈 → C that converges locally uniformly on a given open set
𝑈 ⊂ C to some function 𝑓 : 𝑈 → C. Moreover, let (𝛾𝑛)𝑛∈N be a sequence of 𝐶1-paths
𝛾𝑛 : [0, 1] → 𝑈 such that 𝛾𝑛 → 𝛾 and 𝛾′𝑛 → 𝛾′ uniformly on [0, 1] as 𝑛 → ∞, where
𝛾 : [0, 1] → 𝑈 is a 𝐶1-path. Show

lim
𝑛→∞

∫
𝛾𝑛

𝑓𝑛 (𝑧) d𝑧 =
∫
𝛾

𝑓 (𝑧) d𝑧.

Solution. By definition of the complex path integral, every 𝑛 ∈ N satisfies∫
𝛾𝑛

𝑓𝑛 (𝑧) d𝑧 =
∫ 1

0
𝑓𝑛 ◦ 𝛾𝑛 (𝑡) 𝛾′𝑛 (𝑡) d𝑡.

The idea of the proof will be to apply Lebesgue’s dominated convergence theorem to the
right-hand side. To this aim, we estimate the factors 𝑓𝑛 ◦ 𝛾𝑛 and 𝛾′𝑛 separately.
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1Hint. Show ( 𝑓𝑛 )𝑛∈N is a Cauchy sequence with respect to uniform convergence.
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The latter is elementary. Since 𝛾′𝑛 → 𝛾′ uniformly on [0, 1] as 𝑛 → ∞, the sequence
( |𝛾′𝑛 (𝑡) |)𝑛∈N is bounded uniformly in 𝑡 ∈ [0, 1]; in other words,

sup
𝑛∈N

sup
𝑡∈[0,1]

|𝛾′𝑛 (𝑡) | < ∞.

We turn to the term 𝑓𝑛 ◦ 𝛾𝑛. Here, as ( 𝑓𝑛)𝑛∈N converges only locally uniformly, some
more work is needed. The idea is that for all sufficiently large 𝑛 ∈ N, all segments 𝛾𝑛 ( [0, 1])
will be contained in a neighborhood of the segment 𝛾( [0, 1]) which is compactly contained
in 𝑈; on this neighborhood, ( 𝑓𝑛)𝑛∈N converges uniformly. To construct this neighborhood,
observe first that 𝛾 is continuous (as a uniform limit of continuous paths). Hence, since
[0, 1] is compact, so is the image 𝛾( [0, 1]).

We claim there exists 𝛿 > 0 such that the closure 𝐵̄𝛿 (𝛾( [0, 1])) of the 𝛿-neighborhood
of 𝛾( [0, 1]) is contained in 𝑈. This is clear if 𝑈 = C; hence, let us assume 𝑈 ≠ C. Let
dC\𝑈 : C → [0,∞) denote the distance function to the complement of 𝑈, defined by

dC\𝑈 (𝑧) := inf
𝑦∈C\𝑈

|𝑧 − 𝑦 |.

Then dC\𝑈 is Lipschitz continuous2. Indeed, let 𝑧, 𝑧′ ∈ C. Since dC\𝑈 (𝑧′) is finite, given
any 𝜀 > 0 there exists an 𝜀-almost minimizer 𝑦𝜀 ∈ C \𝑈 in the definition of dC\𝑈 , i.e.

|𝑧′ − 𝑦𝜀 | ≤ dC\𝑈 (𝑧′) + 𝜀.

This easily implies
dC\𝑈 (𝑧) − dC\𝑈 (𝑧′) ≤ |𝑧 − 𝑦𝜀 | − |𝑧′ − 𝑦𝜀 | + 𝜀 ≤ |𝑧 − 𝑧′ | + 𝜀;

here, we used the triangle inequality in the second estimate. The arbitrariness of 𝜀 gives
dC\𝑈 (𝑧) − dC\𝑈 (𝑧′) ≤ |𝑧 − 𝑧′ |.

Flipping the roles of 𝑧 and 𝑧′ in the previous argument gives
|dC\𝑈 (𝑧) − dC\𝑈′ (𝑧′) | ≤ |𝑧 − 𝑧′ |,

which is the desired Lipschitz continuity. In turn, dC\𝑈 is continuous on the compact set
𝛾( [0, 1]). Since𝑈 is open and 𝛾( [0, 1]) is contained in𝑈, dC\𝑈 is positive on 𝛾( [0, 1]) and
thus, since continuous functions attain their minima on compact sets, uniformly bounded
from zero by 2𝛿, where 𝛿 > 0. Considering the 𝛿- instead of the 2𝛿-neighborhood in order
to ensure the closure 𝐵̄𝛿 (𝛾( [0, 1])) is still contained in 𝑈 yields the claim.

Now by uniform convergence of 𝛾𝑛 to 𝛾, there exists 𝑛𝛿 ∈ N such that for every 𝑛′ ≥ 𝑛𝛿 ,
sup

𝑡∈[0,1]
|𝛾𝑛 (𝑡) − 𝛾(𝑡) | ≤ 𝛿;

in other words, 𝛾𝑛 ( [0, 1]) ⊂ 𝐵̄𝛿 (𝛾( [0, 1])). Since ( 𝑓𝑛)𝑛∈N converges uniformly to 𝑓 on
𝐵̄𝛿 (𝛾( [0, 1])) as remarked in the lecture, it is bounded on this set; therefore

sup
𝑛≥𝑛𝛿

sup
𝑡∈[0,1]

| 𝑓𝑛 ◦ 𝛾𝑛 (𝑡) | ≤ sup
𝑛≥𝑛𝛿

sup
𝑧∈ 𝐵̄𝛿 (𝛾 ( [0,1] ) )

| 𝑓𝑛 (𝑧) | < ∞.

Lebesgue’s dominated convergence theorem thus yields

lim
𝑛→∞

∫
𝛾𝑛

𝑓𝑛 (𝑧) d𝑧 = lim
𝑛→∞

∫ 1

0
𝑓𝑛 ◦ 𝛾𝑛 (𝑡) 𝛾′𝑛 (𝑡) d𝑡

=

∫ 1

0
𝑓 ◦ 𝛾(𝑡) 𝛾′ (𝑡) d𝑡

=

∫
𝛾

𝑓 (𝑧) d𝑧

provided 𝑓𝑛 ◦ 𝛾𝑛 → 𝑓 ◦ 𝛾 and 𝛾𝑛 → 𝛾 pointwise on [0, 1] as 𝑛 → ∞.

2We will only need continuity, but the proof is a good exercise in dealing with almost minimizers or almost
maximizers.
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The latter holds trivially by uniform convergence.
To show the former, let 𝜀 > 0. Note that 𝑓 is continuous on𝑈 as the locally uniform limit

of continuous functions, hence uniformly continuous on the compact set 𝐵̄𝛿 (𝛾( [0, 1])). Up
to shrinking 𝛿, we may and will assume every 𝑡 ∈ [0, 1] and every 𝑧 ∈ 𝐵̄𝛿 (𝛾(𝑡)) satisfy

| 𝑓 ◦ 𝛾(𝑡) − 𝑓 (𝑧) | ≤ 𝜀.

In turn, by if 𝑛 ≥ 𝑛𝛿 we obtain

| 𝑓𝑛 ◦ 𝛾𝑛 (𝑡) − 𝑓 ◦ 𝛾(𝑡) | ≤ | 𝑓𝑛 ◦ 𝛾𝑛 (𝑡) − 𝑓 ◦ 𝛾𝑛 (𝑡) | + | 𝑓 ◦ 𝛾𝑛 (𝑡) − 𝑓 ◦ 𝛾(𝑡) |
≤ sup

𝑧∈ 𝐵̄𝛿 (𝛾 ( [0,1] ) )
| 𝑓𝑛 (𝑧) − 𝑓 (𝑧) | + 𝜀.

As 𝑛 → ∞, the right-hand side converges to 𝜀. Since 𝜀 is arbitrary, the desired pointwise3

convergence follows.

Homework 1.4 (Osgood’s theorem). Let 𝑈 ⊂ C be open and ( 𝑓𝑛)𝑛∈N be a sequence of
holomorphic functions 𝑓𝑛 : 𝑈 → C that converges pointwise to 𝑓 : 𝑈 → C. The goal of this
exercise is to show there exists an open, dense subset 𝑈0 ⊂ 𝑈 such that ( 𝑓𝑛)𝑛∈N is locally
uniformly bounded on 𝑈0. As we will see in the course, this implies the local uniform
convergence of ( 𝑓𝑛)𝑛∈N to 𝑓 on 𝑈0; in particular, 𝑓 is holomorphic on 𝑈0.

a. Define the set of points where ( 𝑓𝑛)𝑛∈N is locally uniformly bounded, i.e.,

𝑈0 := {𝑧 ∈ 𝑈 : there exists 𝑟 > 0 with sup
𝑛∈N

sup
𝑧′∈𝐵𝑟 (𝑧)

| 𝑓𝑛 (𝑧′) | < ∞}.

Show 𝑈0 is open.
b. Show if 𝑈0 is not dense in 𝑈, then there exists a ball 𝐵𝑟0 (𝑧0) ⊂ 𝑈 such that for all

balls 𝐵𝑟 ′ (𝑧′) ⊂ 𝐵𝑟0 (𝑧0) the sequence ( 𝑓𝑛)𝑛∈N is not uniformly bounded on 𝐵𝑟 ′ (𝑧′).
c. Use b. to construct a sequence of nested closed balls 𝐵̄𝑟𝑘 (𝑧𝑘) ⊂ 𝐵𝑟𝑘−1 (𝑧𝑘−1) and a

subsequence ( 𝑓𝑛𝑘 )𝑘∈N such that | 𝑓𝑛𝑘 | ≥ 𝑘 on 𝐵̄𝑟𝑘 (𝑧𝑘).
d. Show the intersection of the sequence of closed balls from c. is nonempty. Derive a

contradiction to the pointwise convergence of ( 𝑓𝑛)𝑛∈N and conclude the proof.

Solution. a. Let 𝑧 ∈ 𝑈0 and 𝑟 > 0 be as in the definition of 𝑈0. We claim 𝐵𝑟 (𝑧) ⊂ 𝑈0.
Indeed, given any 𝑦 ∈ 𝐵𝑟 (𝑧) there is 𝑟𝑦 > 0 such that 𝐵𝑟𝑦 (𝑦) ⊂ 𝐵𝑟 (𝑧). Consequently,

sup
𝑛∈N

sup
𝑧′∈𝐵𝑟𝑦 (𝑦)

| 𝑓𝑛 (𝑧′) | ≤ sup
𝑛∈N

sup
𝑧′∈𝐵𝑟 (𝑧)

| 𝑓𝑛 (𝑧′) | < ∞,

The definition of 𝑈0 entails 𝑦 ∈ 𝑈0. Since 𝑦 was arbitrary, this shows 𝐵𝑟 (𝑧) ⊂ 𝑈0; since 𝑧

was arbitrary this shows the claimed openness of 𝑈0.
b. Since 𝑈0 is not dense in 𝑈, there exist 𝑧0 ∈ 𝑈 and 𝑟0 > 0 such that 𝐵𝑟0 (𝑧0) ∩𝑈0 = ∅.

Now suppose to the contrary that ( 𝑓𝑛)𝑛∈N is uniformly bounded on a ball 𝐵𝑟 ′ (𝑧′) as stated.
Then by definition of 𝑈0, we would have 𝑧′ ∈ 𝐵𝑟0 (𝑧0) ∩𝑈0, a contradiction.

c. Since the sequence ( 𝑓𝑛)𝑛∈N is not uniformly bounded on 𝐵𝑟0 (𝑧0), there exists 𝑛1 ∈ N
and 𝑧1 ∈ 𝐵𝑟0 (𝑧0) with the property | 𝑓𝑛1 (𝑧1) | > 1. As the function 𝑓𝑛1 is continuous, we find
a closed ball 𝐵̄𝑟1 (𝑧1) ⊂ 𝐵𝑟0 (𝑧0) such that | 𝑓𝑛1 | > 1 on 𝐵̄𝑟1 (𝑧1). By b., the sequence ( 𝑓𝑛)𝑛∈N
is not uniformly bounded on the interior 𝐵𝑟1 (𝑧1); thus, there exist 𝑛2 ∈ N and 𝑧2 ∈ 𝐵𝑟1 (𝑧1)
such that | 𝑓𝑛2 (𝑧2) | > 2. By continuity of 𝑓𝑛2 we find a closed ball 𝐵̄𝑟2 (𝑧2) ⊂ 𝐵𝑟1 (𝑧1) such
that | 𝑓𝑛2 | > 2 on 𝐵̄𝑟2 (𝑧2). The two desired (sub)sequences are constructed by iterating this
procedure.

(iv) Since the sets 𝐵̄𝑟𝑘 (𝑧𝑘) are nested and compact, their intersection contains an element
𝑧. For this element 𝑧, by construction we have | 𝑓𝑛𝑘 (𝑧) | > 𝑘 for every 𝑘 ∈ N. This shows the
sequence ( 𝑓𝑛 (𝑧))𝑛∈N cannot converge as 𝑛 → +∞ (as it has an unbounded subsequence).

3In fact, we have just shown 𝑓𝑛 ◦ 𝛾𝑛 → 𝑓 ◦ 𝛾 uniformly on [0, 1].
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Hence, 𝑈0 has to be dense in 𝑈 and by definition, ( 𝑓𝑛)𝑛∈N is locally uniformly bounded on
the set 𝑈0 constructed above4.

4Note that we did not explicitly use the holomorphy of each element of ( 𝑓𝑛 )𝑛∈N in the proof. However, the
latter is crucial to pass from local uniform boundedness to local uniform convergence via Montel’s theorem.


